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abstract: A predictive adaptive response (PAR) is a type of de-
velopmental plasticity where the response to an environmental cue
is not immediately advantageous but instead is later in life. The PAR
is a way for organisms to maximize fitness in varying environments.
Insects living in seasonal environments are valuable model systems
for testing the existence and form of PAR. Previous manipulations
of the larval and the adult environments of the butterfly Bicyclus
anynana have shown that individuals that were food restricted during
the larval stage coped better with forced flight during the adult stage
compared to those with optimal conditions in the larval stage. Here,
we describe a state-dependent energy allocation model, which we
use to test whether such a response to food restriction could be
adaptive in nature where this butterfly exhibits seasonal cycles. The
results from the model confirm the responses obtained in our pre-
vious experimental work and show how such an outcome was fa-
cilitated by resource allocation patterns to the thorax during the pupal
stage. We conclude that for B. anynana, early-stage cues can direct
development toward a better adapted phenotype later in life and,
therefore, that a PAR has evolved in this species.

Keywords: predictive adaptive response, developmental plasticity, en-
ergy allocation model, life history, stochastic dynamic programming.

Introduction

Developmental plasticity is the ability of a genotype to
direct development in response to changes in its environ-
ment (Stearns 1982; Piersma and Drent 2003; West-Eber-
hard 2003). Plasticity is adaptive when the resultant change
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in the phenotype causes a fitness benefit in the new en-
vironment (Ghalambor et al. 2007). The predictive adap-
tive response (PAR) is a specific type of developmental
plasticity where the response to a cue is advantageous at
a later life stage rather than immediately (Gluckman and
Hanson 2004a, 2004b; Gluckman et al. 2005). The concept
of PAR was first introduced in the context of human de-
velopment. It is suggested that the human fetus evolved
an ability to interpret cues from the early-life environment
that results in development of a phenotype better matched
to the environment predicted to occur later in life (Gluck-
man and Hanson 2004a, 2004b; Gluckman et al. 2005).
Some empirical data support the idea of PAR in humans
(e.g., Jasienska et al. 2006), but its general validity remains
uncertain. Concerns involve factors such as honesty of cue,
mother offspring conflict, and environmental variance
(Wells 2006, 2007; Rickard and Lummaa 2007; but see
Gluckman et al. 2005, 2008). Theoretical work suggests
that plasticity is less likely to evolve when the relationship
between cue and late-life environment weakens (Reed et
al. 2010; but see Moran 1992; Sultan and Spencer 2002).

One of the best candidates for PAR is the development
of meadow vole (Microtus pennsylvanicus) fur, which is
thicker in autumn-born voles than in those born in the
spring (Lee and Zucker 1988). There is no immediate ad-
vantage of the differential fur thickness, as the nest tem-
peratures are similar in autumn and spring. However,
when the voles mature and leave the nest, the external
temperatures are very different. Other possible examples
of PAR include the dispersal response in the desert locust
Locusta migratoria (Pener and Yerushalmi 1998; Simpson
et al. 1999, 2001) and in the great tit Parus major (Tschirren
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et al. 2007), alteration of morphology of water flea Daphnia
cucullata (Agrawal et al. 1999), and growth rate and de-
velopmental time in the guppy Poecilia reticulata (Gosline
and Rodd 2008). Even though such examples demonstrate
that organisms respond to environmental cues by changes
in physiology and/or life-history traits, what is often lack-
ing is a definitive test of the adaptive value of the responses.
This may be partially explained by the fact that measuring
fitness in the field can be logistically difficult and that
interpretations of such data may be confounded by en-
vironmental and genetic factors (Monaghan 2008).

Ideal opportunities to test the presence of evolved PARs
exist in organisms experiencing seasonal environments,
particularly when generation times are relatively short
compared to the seasonal variation. Moreover, in testing
PAR it is important that the environment can be easily
manipulated and that extensive knowledge exists about the
ecology to which the adaptive suitability of the observed
response can be related (Rickard and Lummaa 2007). One
example of such an organism is the tropical butterfly Bi-
cyclus anynana (Brakefield and Zwaan 2011). This species
exhibits seasonal polyphenism, appearing in two distinct
phenotypes (wet and dry season morphs), which differ in
a number of morphological and life-history traits (Brake-
field and Larsen 1984; Brakefield and Frankino 2009). The
dry season form is, on average, larger and longer-lived,
with delayed reproduction and higher metabolic rate and
fat content, and it is better camouflaged on its resting
background (Brakefield et al. 2007). Seasonal variation is
highly predictable, with warm, wet seasons of abundant
food alternating with cool, dry seasons when there is no
food for larvae.

Recently, Saastamoinen et al. (2010) conducted an ex-
periment on B. anynana to assess whether poor nutritional
conditions during development shaped the adult pheno-
type so that it could better deal with stressful conditions
later in life. Results from this experiment showed that
females experiencing food restriction during larval devel-
opment did not increase their tolerance for adult food
limitation but did alter their body allocation via an in-
creased thorax ratio (i.e., thorax mass/body mass) that led
to an enhanced flight performance (Saastamoinen et al.
2010). These results reveal a substantial effect of plasticity
in response to larval nutrition on variation in adult flight
performance. They also suggest that such plasticity may
be adaptive, as food-stressed individuals could disperse
more effectively to higher-quality habitats when this is
favored.

Here we describe a state-dependent energy allocation
model of the life history of B. anynana, in which organisms
can evolve strategic decisions based on their physiological
state and the state of the environment (McNamara and
Houston 1996). Individuals respond dynamically to con-

dition from the past and present, providing a basis to
predict and adapt to future environments. We address
whether the life-history traits, as observed for B. anynana
in nature, are predicted to evolve and whether the re-
sponses observed in the experiment of Saastamoinen et al.
(2010) are likely to be adaptive.

Methods

Overview of the Model

In the model, we characterize an individual in one of a
set of states that describes variables such as weight, de-
velopmental time, and biological age, which are known to
affect the biological outcomes of interest. Transitions be-
tween states and options such as feeding and egg pro-
duction are described by mathematical relationships, using
energy as a common currency. Environmental factors, such
as temperature, predator pressure, and resource abun-
dance, are also included in the model. We use a daily time
step, and each day the individual makes decisions con-
cerning, for example, larval development time, pupal al-
location pattern, and adult behavior, which will affect its
future state. The optimal decisions in a given environment
are determined using stochastic dynamic programming
(SDP; Mangel and Clark 1988; Houston and McNamara
1999; Clark and Mangel 2000). We assume that natural
selection acts to optimize the life history of an individual
by maximizing the number of progeny that the individual
produces. Once the optimal decisions have been found,
the traits of the individuals that define its state in the
different environments can be modeled by forward sim-
ulation. As nutritional status at the larval stage influences
allocation strategies in the pupal and adult stages, all these
stages of the life cycle are modeled. Figure 1 presents an
overview of the model. We first explain how environmental
variation is addressed and then briefly describe each stage
of the life cycle. Further mathematical details are provided
in the appendix.

Environmental Variation

Generations of B. anynana live in two alternating seasons,
the dry and the wet seasons. A year in the model consists
of 366 time steps, each representing 1 day. During most
of the dry season, which lasts 6 months, there are no host
plants for larvae to feed on. At the start of the wet season,
ambient temperature increases, followed by an increase in
rainfall (Windig et al. 1994) and an increase in host plant
density. Hence, during the wet season at every time step
a proportion of the patches changes in quality. As the wet
season progresses, temperature, rainfall, and the number
of host plants decrease. For each time step in the model,
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Figure 1: Overview of the model. The different stages of the butterfly’s life history (larva, pupa, adult) are shown from top to bottom.
Individuals at each stage are characterized by the traits shown as yellow squares (biol. age p biological age). The processes in the model
are shown as white rectangles. The environmental factors are shown in green circles. Photos by Oskar Brattström.

we assigned a temperature (table S1, fig. S1, available on-
line) and a proportion of good patches based on climate
information available for Malawi, from where the labo-
ratory population of B. anynana was derived (Windig et
al. 1994). A good patch contains host plants where larvae
can feed: see table S1 and figure S1. Every patch becomes
good and bad once a year, with the percentage of good
patches fixed for a given day. A good patch remains a good
patch unless the proportion of good patches decreases. We
let

l (t) p Pr(good patch at time t is followedgb

by bad patch at time t � 1). (1)

This probability is

J (t) � J (t � 1)g g
l (t) p , (2)gb

J (t)g

where Jg(t) is the proportion of good patches at time t
(table S1). The chance that a good patch remains a good
patch is . Equivalent relationships hold for the1 � l (t)gb

probability of a patch being bad.

The probability that a butterfly reaches a good patch by
dispersal is equal to the relative frequency of good patches
present in the next time step and is therefore equal to

, if the butterfly disperses at time t. This is in-J (t � 1)g

dependent of the patch quality from the point of dispersal,
and therefore there is no spatial correlation. The chance
of reaching a bad patch is . The seasonal var-1 � J (t � 1)g

iation is predictable in the sense that when a good patch
turns into a bad patch, this patch does not become a good
patch again until the next wet season. Hence, the only
chance of reaching a good patch is by dispersal. At the
very end of the wet season there are so many bad patches
that the chance of reaching a good patch is negligible.
From year to year, the time at which a specific patch be-
comes good or bad is variable.

In our model, we separate data by generation, which is
possible since we can trace each individual from birth.
Individuals born from parents surviving the dry season
are called, “first generation, wet season morphs.” The off-
spring they produce are called “second generation, wet
season morphs.” These produce the individuals that sur-
vive the dry season, and these individuals are therefore
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called the “third generation, dry season morphs.” Butter-
flies sometimes survive longer than one generation, but
lose the ability to reproduce, so in reality no overlap in
generations exists.

Larval Stage

During the larval stage, the state of an individual is de-
scribed by its body weight. Larvae are located in either a
good or a bad patch, with food being available only in a
good patch. The growth of a larva depends on its current
weight, the availability of food, and temperature. At every
time step (day) a larva consumes an amount of food that
is partitioned between daily costs and growth. This is mod-
eled as

w (t � 1) p w (t) � E (p)L L L (3)
i �i T(t) c �c T(t)2 3 2 3# [i w (t) � c w (t) ],1 L 1 L

where wL (t) is the weight of the larva with an initial value
1 mg and EL(p) is the effect of patch quality in the larval
stage, taking the value of 0 in a bad patch and 1 in a good
patch. The constants i1, i2, and i3 relate larval weight and
temperature (T) to daily intake and c1, c2, and c3 to daily
costs. We select the values of these constants so that the
model behavior corresponds to larval growth in Lepidop-
tera. Larval growth follows an S-shaped curve (Parker and
Johnston 2006) with an exponential initial phase (Mackey
1978). At lower temperatures growth rate decreases, but
final size at pupation increases due to longer development
time (Atkinson 1994; Davidowitz and Nijhout 2004; see
also fig. A1), and this is also true for B. anynana (Oostra
et al. 2010). Therefore, we model growth as being faster
at higher temperatures but with a lower asymptote of final
weight. Pupation can be initiated when a larva reaches a
weight larger than the critical weight for pupation, which
is assumed to be independent of temperature, but see Da-
vidowitz et al. (2004) and Nijhout et al. (2006). Alter-
natively, the larva can keep growing and pupate later. These
two possibilities generate two different relationships for
fitness that are compared in the SDP.

We let FL(t, p, wL) denote the maximum accumulated
reproductive success of an adult that ultimately emerges
from a larva with weight wL, in patch p at time t. For a
larva opting to grow at time t, future fitness is

b

′V (t, p, w ) p l (t � 1)F (t � 1, p , w )′�grow L pp L L′p pg (4)

# S[m , p(t), p(t � 1)].L

We calculate the fitness of this individual for the cases that
the patch will be a good patch or a bad patch at time

and sum over these two options using the proba-t � 1

bilities ( ) from equation (2), where p′ indicates thel ′pp

patch quality at time . Survival (S) depends on dailyt � 1
mortality (mL), which is constant and thus independent of
weight, and patch quality at this time step and the former
time step ( ). Starvation is known to increase mortalityt � 1
rates for Bicyclus larvae (Bauerfeind and Fischer 2009),
which is modeled by a severe reduction in survival if a
bad patch is experienced for more than 1 day; they also
tend to increase for insect larvae at higher temperatures
(Oloumi-Sadeghi and Levine 1989; Padmanabha et al.
2011). See the appendix, available online, for further
details.

We let Fp(t, p, wP, d) denote the maximum accumulated
reproductive success of the adult that ultimately emerges,
given that the pupa is in a patch of kind p, with pupal
mass wP and developmental state d at time t. Thus, for a
larva that pupates, future fitness is

b

′V (t, p, w ) p l (t � 1)F (t � 1, p , w , d)′�pupate L pp P P′p pg (5)

# S[m , p(t), p(t � 1)].L

The developmental state of the pupa is initially zero
( ), and the pupa will start development in the nextd p 0
time step. Survival is equal to that in equation (4). Again
the fitness is summed over both kinds of patches with
probabilities (l) that the individuals will be in a good or
bad patch as in equation (4).

The optimal decision (to grow or pupate) is then de-
termined by the larger of the fitness values in equations
(4) and (5):

F (t, p, w ) pL L (6)

max (V (t, p, w ), V (t, p, w )).grow L pupate L

Pupal Stage

During the pupal stage, an individual’s state is described
by weight and pupal developmental state. The develop-
ment state is temperature- and time-dependent as a fixed
number of degree-days are required before the adult can
eclose and at higher temperatures it takes fewer days to
complete pupal development (Koch et al. 1996; Oostra et
al. 2010). For simplicity, pupal mortality (mP) is assumed
to be constant as there are no data available for Bicyclus
and data concerning the relationship between pupal size
and survival in other Lepidoptera are inconsistent (Tam-
maru et al. 2002). Using the definition for Fp(t, p, wP, d)
provided in equation (5), future fitness for a pupa that
does not eclose and continues to develop is
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V (t, p, w , d) pdevelop P (7)
b

′ ′l F (t � 1, p , w , d ) exp (�m ),′� pp P P P′p pg

where the developmental state increases from d to d ′ in
both a good and a bad patch, given by probability (l),
and survival is given by .exp (�m )P

At the end of the pupal stage, the pupal weight is par-
titioned into thorax, abdomen, and fat, which represents
the second strategic choice in the model. During the pupal
stage, the costs for development, growth, and maintenance
differ among tissues (Kooijman 2009), which is imple-
mented in the model as follows: for each 10 mg of pupal
weight, 10 eggs of 0.1 mg each can develop. This yields a
weight ratio from the pupal to the adult stage of 10 : 1 for
abdominal tissue; for muscle tissue the corresponding ratio
is 2 : 1 and for fat 1 : 1. Although no direct comparison
can be made to data, a 90% decrease in muscle tissue in
de-alated crickets only led to a doubling of the number
of eggs produced (Tanaka 1991). Thus, egg production is
most costly, as eggs not only consist of proteins but also
need to be maintained in a damage-free condition (Kooij-
man 2010). The actual tissue-specific costs are unknown,
but since exploration of a range of costs shows no qual-
itative change in the results, we continue with the ones
described above, which we consider to be reasonable
estimates.

Fitness at the end of the pupal stage depends on the
amount of resource allocated to fat, abdomen, and thorax
and biological age X (see eq. [11] below) of the adult.
Thus, if represents the maximum′F (t � 1, p , w , w , w , x)A f a t

accumulated reproductive success of an adult that is in
patch of kind p with fat, abdominal, and thorax masses
wf, wa, wt and biological age x at time t the fitness value
of eclosing is

V (t, p, w , d) peclose P (8)
b

′l F (t � 1, p , w , w , w , 0) exp (�m ).′� pp A f a t P′p pg

The conversion of pupal mass (wP) to fat, abdominal, and
thorax masses depends on the allocation pattern as de-
scribed above.

If the pupae are in a developmental state lower than
the boundary (dmax) at which they will eclose, the fitness
during this development (eq. [9a]) is equal to that de-
scribed in equation (7). When the developmental state is
equal to or larger than this boundary, the fitness value
(eq. [9b]), at eclosion, is determined by the optimization
of the allocation to the different adult tissues as described
in equation (8). Therefore,

F (t, p, w , dFd ! d ) pP P max

V (t, p, w , d), (9a)develop P

F (t, p, w , dFd ≥ d ) pP P max

max (V (t, p, w , d)), (9b)eclose P
allocation

where “allocation” refers to all possible ways the energy
acquired during the larval stage can be allocated to the
adult tissue fat (wf), abdomen (wa) and thorax (wt) as
described in equation (8).

Adult Stage

During the adult stage, the state of a butterfly is described
by the weight of its tissues (fat, abdomen, and thorax) and
its biological age. At every time step, an adult can un-
dertake one of three behaviors, B: to feed, disperse, or
reproduce. When feeding, the weight of fat increases. This
increase in fat decreases with biological age so as to reflect
lower feeding rates (Wong et al. 2009). If the butterfly
disperses, fat decreases by an amount dependent on total
weight, weight of the thorax, and temperature. Repro-
duction decreases the number of eggs present in the ab-
domen, and additionally, the development of these eggs
costs 1 mg of fat per egg. The effect of the different strategic
choices on the daily changes in fat is summarized as feed-
ing:

w (t � 1) p (1 � q)w (t) � I � C , (10a)f f A A

dispersing:

w (t � 1) p (1 � q)w (t) � C � T(t)f f A (10b)

# f{w (t),w (t),w (t)},f t a

and reproducing:

w (t � 1) p (1 � q)w (t) � C � N , (10c)f f A eggs

where wf(t) is the weight of fat at time t, IA is daily intake
for feeding individuals, CA are the daily costs, T is tem-
perature, and Neggs represents the cost for laying eggs. The
function that relates the weight of fat, abdomen, and tho-
rax to cost of dispersal (f{wf(t), wt(t), wa(t)}) increases with
weight of fat and abdomen, but decreases with thorax.
Thus a relatively larger thorax ensures that dispersal is less
costly. The variable q represents the proportion of fat used
for maintenance and repair, which affects the rate of in-
crease in biological age, X(t). The actual value of q is a
strategic choice for adults and can change every time step.
Biological age is irreversible and increases at every time
step by an amount determined by the energetic investment
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in maintenance and repair processes, total weight, and
temperature:

a w (t) � a (T(t) � a )1 total 2 3X(t � 1) p X(t) � . (11)
rqw (t)f

The parameter r is a conversion constant relating an
amount of fat (wf (t)) to an amount of damage repair.
Damage increases faster for individuals with more tissue
and at higher temperatures. Further constants a1, a2, and
a3 are also introduced.

Mortality during the adult stage is dependent on pred-
ator pressure, biological age, and weight of the adult. Pred-
ator pressure is lower in the bad patches compared to good
patches corresponding to field observations (Lyytinen et
al. 2004; Brakefield and Frankino 2009; Joiris et al. 2010).
We model total mortality rate as

m p m (X(t)) � m (p) � m (w ), (12)total X pred w total

where intrinsic mortality (mX) depends on biological age
(X(t)), predation-related mortality (mpred(p)) depends on
patch quality, and weight-related mortality (mw(wtotal)) de-
pends on total weight. The latter sets a lower boundary
for the weight at which butterflies can still survive. Mor-
tality due to biological age is

m (X(t)) p a � a exp (a X(t)), (13)X 4 5 6

where a4, a5, and a6 are constants.
The future fitness for an adult following behavior B (see

eq. [10]) is

V (t, p, w , w , w , X) pB, q f a t

b

′ ′ ′ ′ ′l(B)F {t � 1, p , w , w , w , X } (14)� A f a t[ ′p pg

� N (B)F (t, p, 1) D(B) exp (�m ),eggs L total]
where B represents the decision for behavior (see eq. [10]).
The chance of reaching a certain type of patch in the next
time step (l) is dependent on behavior since in the adult
stage the adult can either feed or reproduce, and l will
then be calculated using equation (1), or disperse, when
l will be calculated using equation (2). When individuals
lay eggs, Neggs(B) is 10; otherwise it is 0. Each egg, equiv-
alent to a larva of weight 1 mg, provides a fitness benefit
of FL(t, p, 1), which is dependent on patch quality (p) and
(t) and equivalent to the fitness of a larva with a weight
of 1 mg from equation (3). The reason for modeling FL(t,
p, 1) as dependent on patch quality and time is that larvae
cannot survive in the dry season. Therefore, eggs laid by
a butterfly in the dry season would be expected to result
in a lower fitness benefit than those laid in the wet season.

Survival (exp(�mtotal)) is multiplied by a term (D(B)),
which is required because survival is affected by dispersal
and takes a value of 0.75 for individuals that disperse,
otherwise it is 1. The change in biological age from X to
X′ depends on q, the amount of energy allocated to main-
tenance and repair.

The optimal decisions for B and q give the maximum
accumulated reproductive success of an adult, FA(t, p, wf,
wa, wt, x):

F (t, p, w , w , w , x) pA f a t (15)

max V (t, p, w , w , w , x).B, q B, q f a t

Backward Iteration

We determine the optimal strategies by finding the max-
imum value for fitness from equations (6) for the larval
stage: 9 for pupae and 15 for adults. The SDP algorithm,
which works backward in time, is initiated at a nominal
time horizon by assigning the fitness for all larvae with a
weight of 1 mg (newly born) a value of 1, that is,

in equation (4). The fitness of all other statesF (t, p, 1) p 1L

are 0. As the environmental parameters between years for
a given time step are the same, the fitness values on a
specific day for each combination of states converge to a
single value. Following convergence, the fitness values and
optimal strategies for each state are stored to be used for
forward simulations.

Forward Simulation

In the forward simulation we model two scenarios. Firstly,
individuals are simulated by the introduction of 100 larvae
of a size of 1 mg at the start of the wet season (time step
175). The temperature and proportion of good patches
used for these simulations are the same as those used in
the backward iterations; see table S1, available online. The
output is the numbers of individuals, their life-history
strategies, and their traits. Second, we simulate the ex-
perimental setup of Saastamoinen et al. (2010). In our
model, there are good and bad patches, and during the
backward optimization, the patches vary seasonally. In the
laboratory experiment, one group was fed optimal food
as larvae throughout development, while another was
starved in the last stage of larval development. For the
model, all patches are assumed to be good at the start of
a forward simulation but all turn into bad patches when
food manipulation during the larval stage is needed. In
the optimization, the adults can choose to feed, fly, or
reproduce. During the forward simulation, adults are
forced to perform a series of flight bouts by fixing their
strategy to flight rather than following their optimal strat-
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Table 1: Life-history traits and strategies separated by generation and patch quality

Wet season form 1 Wet season form 2 Dry season form

Good Bad Good Bad Good Bad

Larval and pupal
strategies N p 19,759 N p 407 N p 83,486 N p 11,484 N p 863 N p 200,274

Size at pupation 138.7 (17.9) 151.2 (21.9) 145.8 (22.9) 141.8 (18.8) 239.5 (1.2) 179.9 (32.5)
Allocation fat .48 (.02) .45 (.01) .46 (.022) .46 (.04) .45 (.00) .47 (.02)
Allocation abdomen .47 (.02) .41 (.02) .49 (.023) .44 (.02) .45 (.00) .47 (.02)
Allocation thorax .05 (.00) .14 (.03) .05 (.01) .10 (.05) .10 (.00) .06 (.02)

Adult optimal
behavior N p 60,782 N p 42,396 N p 55,912 N p 67,411 N p 127,158 N p 526,666

Proportion feeding .78 (.002) 1.00 (.000) .67 (.001) .99 (.000) 1.00 (.00) 1 (0)
Proportion

reproducing .21 (.002) 0 (0) .29 (.002) 0 (0) .00 (.00) 0 (0)
Proportion

dispersing .01 (.000) .00 (.000) .00 (.001) .01 (.000) .00 (.00) 0 (0)
Body composition

adults N p 60,782 N p 42,396 N p 55,912 N p 67,411 N p 127,158 N p 526,666
Proportion fat .37 (.002) .40 (.002) .39 (.002) .31 (.002) .03 (.000) .28 (.001)
Proportion

abdomen .48 (.002) .43 (.002) .50 (.002) .61 (.002) .84 (.001) .63 (.001)
Proportion thorax .15 (.001) .17 (.002) .11 (.001) .08 (.001) .13 (.001) .09 (.001)

Adult traits N p 60,782 N p 42,396 N p 55,912 N p 67,411 N p 127,158 N p 526,666
Fecundity 44.6 (16.9) 40.6 (3.2) 23.3 (27.1) 3.9 (12.8) 1.1 (3.1) .0 (.2)
Age 16.9 (14.8) 57.5 (26.5) 16.9 (38.6) 79.6 (63.4) 230.3 (32.6) 88.7 (61.0)
Biological age 16.6 (15.9) 51.0 (20.2) 9.7 (19.3) 30.1 (30.1) 105.4 (38.6) 23.0 (25.2)
Fat used per day

for repair .24 (.13) .26 (.06) .66 (.55) .63 (.33) .20 (.09) .87 (.49)

Note: Average values (SD) of indicated strategies and traits for the different stages (larval, pupal, and adult) of the three generations in good

and bad patches. Larval and pupal traits are measured once, while those of the adults were measured every day in the life of the individual. The

N indicates the number of individuals in a single simulation.

egy in the first few time steps but can then behave opti-
mally according to when in the seasonal cycle they live
(first, second, or third generation).

States and Strategic Decision Possibilities

We discretize state variables as detailed in the supplemental
material (table S2). For the strategies, in every time step,
larvae can choose to start pupation. Pupae can allocate
from 5% to 90% to every tissue, in steps of 5% with the
total constrained to 100%. Adults can choose one behavior
from feeding, dispersal, reproduction in each time step.
Also they can reallocate energy to maintenance and repair
for 0%–8% of the fat tissue every day in 10 steps between
0% and 8%. In initial runs of the model, no individual
ever spent more than 8% on maintenance and repair;
therefore, we reduce the choice to this number.

Typically in a state dependent model a robustness test
is performed. This is carried out by altering the parameters
systematically and checking whether the optimal strategic
decisions and overall results show dramatic changes. If
such sensitivity is displayed, then the generality of the

results is limited; however, if the results are stable, the
generality is increased. In the appendix, available online,
a detailed description is given of the robustness tests we
perform. Most of the results are qualitatively stable, except
for the number of generations, which can be altered by
varying larval growth rates (i.e., by changing parameter
EL(p) in a good patch, eq. [3]).

Results

Population and the Seasonal Life-History Strategies
Based on the Model

The numbers of larvae, pupae, and adults in good and
bad patches in the model are shown in table 1 and figure
2. As in the wild, the dry season morph survives through-
out the dry season without reproducing, and reproduction
is initiated at the start of the next wet season. The first
wet season generation of butterflies will produce the sec-
ond wet season generation, which in turn produces off-
spring that survive over the next dry season.

Most larvae (98.0%) in the first wet season generation
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Figure 2: Number (log transformed) of individuals (A, larvae; B, pupae; C, adults) across the seasons in good (green) and bad (brown)
patches. Each point indicates the number of individuals on a specific time step (day) during the simulation. Two years are simulated,
consisting of two dry and two wet seasons, as indicated below the graphs. In the lowest panel, the line represents the proportion of good
patches in each time step.

pupate in good patches, while this number is reduced
(87.9%) in the second generation. If during larval growth
a patch changes from good to bad, larvae initiate pupation.
In the dry season generation, most larvae are in a patch
that changes from good to bad, and therefore, they start
to pupate in a bad patch (99.5%). Based on our model,
the average pupation size is larger in the first than in the
second wet season generation (table 1; fig. S2, available
online). Individuals in the third generation (dry season)
are on average the largest (table 1; fig. S2). Those larvae
of the second wet season generation that pupate later, do
so at a smaller size even in good patches, which explains
the variation in size. Within the dry season, higher variance
is explained by habitat heterogeneity and consequently by
the fact that some individuals are able to prolong their
growth and increase their size, whereas others run out of
food and remain small.

Life-history strategies (summarized in table 1) are de-
termined by the resource allocation patterns of individuals,
as those with larger abdomens can lay more eggs, while
those that allocate resources into thorax require less energy

for a single dispersal event between patches. Fat is used
as storage to support activities such as egg production,
dispersal, and damage repair. During the pupal stage, in-
dividuals of the first wet season generations allocate more
to fat than abdomen when they are in good patches, while
this is reversed in the second wet season generation (table
1; fig. S3). Individuals of the two wet season generations
in bad patches allocate more resources to fat than to ab-
domen, while dry season individuals allocate equal to fat
and abdomen in good and bad patches (table 1; fig. S3).
Individuals of the wet season generations allocate much
more to thorax in bad, compared to good patches, indi-
cating investment in dispersal (table 1; fig. S3).

As adults, individuals have a choice of feeding (acquiring
more resources), reproducing, or dispersing, and these be-
haviors are highly dependent on season and patch quality.
Since only bad patches are available during the dry season,
all individuals feed in order to survive the dry season (fig.
3A). Reproduction is not beneficial in terms of fitness, as
the larvae would not survive. Reproduction only takes place
in good patches (table 1; fig. 3B). Individuals in the wet
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Figure 3: A–C, Proportion of individuals feeding, reproducing, and dispersing (in respective order). D, E, Average weight of fat tissue and
abdomen; F, G, variation in aging and the amount of fat used for repair. The data represent individuals in good (green) and bad (brown)
patches dependent on the seasonal variation, which is indicated by the bar below the graph (where the line represents the proportion of
good patches in each time step).

season that are still able to reproduce but are in a patch
that changes from good to bad, disperse (table 1; fig. 3C).
In every generation some individuals also disperse from
good to bad patches (table 1; fig. 3C), but these individuals
have lost the capacity to reproduce as they have insufficient
fat storage (not shown), and hence their behavior does not
influence their fitness or the number of larvae in the pop-
ulation. Young individuals without fat reserves can take up
energy and regain the capacity to reproduce, whereas old
individuals that survived the dry season cannot.

In the wet season, adults use fat mostly for reproduction
(fig. 3D), whereas in the dry season, individuals do not
reproduce or disperse and rather use fat to reallocate re-
source to maintenance and repair (fig. 3G). Therefore,
butterflies age more rapidly in the wet season compared
to the dry season (fig. 3F).

Finally, the average life span differs among the three
generations and is highest in the dry season morph, when
butterflies can only reproduce at an advanced age as the
next wet season begins (table 1; fig. 2). Due to lower sur-
vival and reproduction at an older age, the average fe-
cundity in the dry season generation is much lower than
in the two wet season generations (table 1; fig. 2). Within
the wet season, individuals of the first generation have a
lower life span but higher fecundity compared to the sec-
ond generation (table 1). In good patches, fat used for
maintenance and repair per day is highest in the second
wet season generation, while in bad patches, it is highest
in dry season individuals (table 1).

Predictive Adaptive Response

We test whether food shortage during the larval stage or an
increase in dispersal events during the adult stage influenced
life span and fecundity. Figure 4 shows the effect of larval
food manipulation on thorax ratio and early fecundity com-
pared to the previous laboratory experiment. Both in the
experiment and in the model, the thorax ratio is higher for
individuals that were restricted during late larval develop-
ment (fig. 4A, 4B). In the experiment, early fecundity was
lower for individuals that were food restricted (fig. 4C). In
the model, the abdomen weight (proxy for fecundity) is also
lower for restricted individuals (fig. 4D). The percentage of
thorax in the experimental butterflies was 24.1% and 25.7%
of the total body weight for ad lib. and restricted individuals,
respectively (Saastamoinen et al. 2010), while in the model
these values are lower, 5.0% and 10.0%. The standard de-

viation of the thorax ratio is larger in the bad patch indi-
viduals in the model prediction. This is because the timing
of encountering a bad patch varies widely among individ-
uals, leading to higher variation in their weight compared
to those in good patches.

Figure 5 shows the effect of larval and adult manipu-
lation on life span and fecundity. These two traits are less
affected by the adult treatment (forced flight events) when
larvae had experienced food limitation, compared to in-
dividuals with an optimal larval period in the wet season
(fig. 5). This is because in both wet season generations,
allocation to the thorax is higher for individuals deprived
of food in the late larval stage (data not shown). In the
wet season, life span is positively related to flight events,
while fecundity is negatively related to flight events for
individuals with an optimal larval period (fig. 5). For in-
dividuals that experience food shortage during the larval
stage, life span and fecundity are both largely unaffected
by the adult treatment. Larval treatment groups do not
respond differently to adult treatment for dry season in-
dividuals (fig. 5). When comparing the results between
model and experiment, the effects of flight on fecundity
are more similar than those on life span (fig. 5), as the
optimally reared individuals have decreased fecundity
when forced to fly, both in the model and in the experi-
ment. Fecundity and life span within a larval treatment
group are negatively related in the model, while in the
experiment they were positively related.

Discussion

In this study we describe a state-dependent energy allo-
cation model of the life history of Bicyclus anynana, which
we use to test whether a specific plastic response observed
under laboratory conditions could potentially be adaptive
in nature. Food-restricted larvae in both the experiment
and the model allocated more energy to dispersal ability,
which in the model made them more likely to reach a
good-quality patch and hence reproduce successfully. We
thus conclude that a predictive adaptive response evolved
in B. anynana. However, this specific predictive adaptive
response is likely to be only adaptive in one of the seasons,
the wet season, as in the dry season no extra allocation to
dispersal ability occurred in response to larval food re-
striction. This is expected as the benefit of increased dis-
persal is lacking in this season due to lack of good-quality
habitat patches.
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Figure 4: Comparison between the experimental data and the model predictions. A, B, Average thorax ratio (�SD) in the experiment and
in the model, respectively, from one simulation. The lower panels show the mean number of eggs (�SD) during the first 2 weeks in the
experiment (C) and the weight of the abdomen in the model (D).

Life History and Seasonal Variation

Seasonal change in our model consists of variation in tem-
perature and the percentage of good patches, both of which
are lowest in the dry season and peak in the wet season.
This pattern is comparable to measurements taken from
the site where B. anynana has been studied in Malawi
(Brakefield and Reitsma 1991; Windig et al. 1994). Sim-
ilarly, predicted seasonal population dynamics emerge
from the model as the dry season form adults delay their
first reproduction and initiate it only early in the wet sea-
son to yield the first generation of the wet season form.
This generation then produces a second wet season gen-
eration, which is followed by a new dry season generation.

An important question for any state-dependent energy-
allocation model is to consider the relationship between
the assumed physiological rules and the inferred optimal

behavior. In our model, larval growth is influenced by
temperature, so that at higher temperatures growth rate
is higher but maximum possible size is lower, as is com-
mon for insects (Atkinson 1994; Davidowitz and Nijhout
2004). In the dry season, individuals are, on average, larger,
and temperature is lower. Therefore, we expect the optimal
life-history decision to be to prolong larval growth. This is
partly facilitated by the assumed physiology in the model,
since larvae can reach a higher plateau of size at lower
temperatures. In a version of the model in which temper-
ature do not influence larval growth, the size differences
between the different generations of butterflies remain, sug-
gesting that another factor additional to the assumed phys-
iology contributed to the size variation. A possible expla-
nation is that optimal size varies between seasons, and that
larger body size is favored in the dry season.
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In addition to variation in size, we also find variation
in allocation patterns, which vary with the generation and
the quality of the patches in which the larvae are present.
We find a large number of larvae in the second wet season
generation in patches that change from good to bad in
quality. Our model shows that when this occurs, individ-
uals allocate more resources to their thorax during the
pupal stage, which is comparable to the findings of earlier
laboratory studies (Saastamoinen et al. 2010). An increased
thorax ratio allows individuals to disperse more easily to
a new, good-quality patch, where they can successfully
reproduce. In our model, we presume that individuals that
allocate more to thorax during the pupal stage use less
energy per flight event based on the observation that in-
dividuals with a higher thorax ratio are better fliers (Mar-
den 2000). Thus the cue of food deprivation during the
larval stage directs the allocation pattern in the pupal stage
towards a more optimal phenotype (i.e., higher thorax
ratio). The pupae of the dry season generation do not
show this allocation pattern, since the allocation to thorax
is equal in bad- and good-patch individuals. The model’s
prediction is thus that in the field, pupae from dry patches
with low-quality plants will allocate more to the thorax
during the middle of the wet season when some good
patches remain. Later in the wet season, this allocation to
the thorax becomes less favorable because the likelihood
of reaching a good patch decreases as the number of bad-
quality patches increases.

Predictive Adaptive Response

The second aim of the model is to test whether the envi-
ronment of B. anynana is expected to favor evolution of a
predictive adaptive response. Experiments had previously
shown that individuals reared as the wet season form had
an increased resistance to adult manipulation (flight stress)
when food restricted during the final larval stage (Saasta-
moinen et al. 2010). Interestingly, in our model, individuals
are also less affected by this adult treatment if they are food
restricted during the final larval stage. The increased ability
to cope with forced flight events is facilitated by an increase
allocation to thorax in the model, consistent with what was
observed in the experiment (Saastamoinen et al. 2010). The
relationship between food limitation, increased thorax ratio,
and resistance to increased flight events does not appear in
the model for the dry season generation.

The patterns of relative response to food manipulation
in the experiment and in the model with respect to allo-
cation to thorax are thus very similar. However, the thorax
ratio in the model is, on average, lower than in the exper-
iment (fig. 4A, 4B). This difference can be explained by a
lack of detailed realism concerning the function of the tho-
rax in the daily routine movement of a butterfly. In the
model, the thorax is not necessary in the search for food
or mating partners but only for dispersal. However, the
argument that increasing thorax ratio in restricted condi-
tions is adaptive is supported by the model, which suggests
that these adaptations can be studied in this type of model.
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In addition, Oostra et al. (2010) showed that the relative
thorax weight is higher for individuals reared on good-
quality plants as dry season morphs compared to wet season
morphs, which is true in our model for the individuals in
good patches (but not in bad patches; fig. S3).

There are also differences between the model and ex-
periment in the results concerning the relationship between
fecundity and life span, a positive correlation between these
traits being found only in the experiment. This difference
may be partially due to any allocation to fecundity leading
to a larger increase in intrinsic mortality rate in the model.
In reality, a number of other traits are also likely to covary
with fecundity and life span (e.g., immunological responses,
metabolic rate, activity, stress resistance; Boggs 2009), but
such relationships are not included here. Since the larvae
in both the model and experiment are treated equally, the
inconsistency is unlikely to be caused by a difference in
acquisition during the larval stage, which may potentially
also lead to positive relationships between life-history traits
(De Jong and Van Noordwijk 1992).

We have modeled an organism that lives for a short
time compared to the length of the seasonal period (i.e.,
shorter than a year). Besides sampling the environment
directly (Krebs et al. 1978; Mangel and Roitberg 1989),
information can additionally be passed on via maternal
effects. Whether it is adaptive to pass on information from
one generation to the next is very much dependent on the
life span compared to the length of a seasonal period
(Lachmann and Jablonka 1996). The type of maternal ef-
fect that evolves is likely to be highly dependent on pa-
rameters such as life expectancy, environmental fluctua-
tions and predictability, presence of parent-offspring
conflict, and constraint and costs of producing offspring
with specific phenotypes (Marshall and Uller 2007). These
will be quite different between long-lived organisms and
short-lived insects, and therefore, it is unlikely that any
maternal effects in the modeled organism could be trans-
lated to the cases of long-lived organisms. A model as
described here can be made for long-lived organisms
though, when agreement is reached about the relevant
ecological parameters. Such an approach is likely to benefit
the discussion around PAR.

In conclusion, the evolution of developmental plasticity
resulting in the two distinct adult morphs emerged as a
robust prediction of the model. In addition, we show that
a short-lived organism, such as B. anynana, living in a sea-
sonal environment can evolve a PAR. The model is based
on the considerable biological and ecological knowledge we
have on this species, accumulated through extensive field
and laboratory studies. However, even without this extensive
knowledge state-dependent modeling is a valuable tool as
it allows for freedom of parameters. The combination of
modeling and experiments promises to be a constructive

way to test the adaptive value of plasticity in this species
and potentially in others, as it facilitates the evolutionary
and ecological interpretation of laboratory experiments.
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